FastCharge: Ultra-Schnellladetechnologie bereit für die Elektrofahrzeuge der Zukunft

Im bayerischen Jettingen-Scheppach wurde jetzt der Prototyp einer Ladestation mit einer Leistung von bis zu 450 kW eingeweiht. Entwickelt wurde die Ladesäule, die das Drei- bis Neunfachen der an bisherigen DC-Schnellladestationen maximal verfügbaren Ladeleistung bereitstellt im Forschungsprojekt FastCharge. Seit 2016 erforscht das Industriekonsortium unter Leitung der BMW Group, welche technischen Voraussetzungen Fahrzeuge und Infrastruktur erfüllen müssen, um die extrem hohen Ladeleistungen einsetzen zu können. Weitere Beteiligte sind die Allegro GmbH, die Phoenix Contact E-Mobility GmbH sowie die Porsche AG und die Siemens AG. FastCharge wird mit insgesamt 7,8 Millionen Euro durch das Bundesministerium für Verkehr und digitale Infrastruktur (BMVi) gefördert. Die Umsetzung der Förderrichtlinien wird von der Nationalen Organisation Wasserstoff- und Brennstoffzellentechnologie (NOW) koordiniert.

Die in dem Projekt entstandenen Elektro-Forschungsfahrzeuge demonstrierten an der Ultra-Schnellladestation Ladezeiten von weniger als drei Minuten für die ersten 100 Kilometer Reichweite beziehungsweise 15 Minuten für einen vollen Ladevorgang.

Stromversorgung und Kommunikation im Ladenetz

Das im Projekt eingesetzte Energieversorgungssystem von Siemens ermöglicht es, die Grenzen der Schnellladefähigkeit der Fahrzeugbatterien zu erproben. Es kann schon heute mit höheren Spannungen von bis zu 920 Volt arbeiten, wie sie bei zukünftigen Elektrofahrzeugen erwarten werden.

Laden von Elektrofahrzeugen mit bis zu 450kW (v.l.n.r.): Dr. Markus Göhring (Porsche), Frank Bauer (BMW Group), Stephan Elflein (BMW Group, FastCharge-Projektleiter), Bernhard Pufal (Allego), Gerhard Oberpertinger (Siemens) und Robert Ewendt (Phoenix Contact E-Mobility). Foto: Phoenix Contact GmbH & Co. KG

In das System wurden sowohl die Hochleistungselektronik für die Ladeanschlüsse als auch die Kommunikationsschnittstelle zu den Elektrofahrzeugen integriert. Dieser Lade-Controller sorgt für eine automatische Anpassung der abzugebenden Leistung, so dass verschiedene Elektroautos mit einer Infrastruktur geladen werden können. Die flexible, modulare Architektur des Systems erlaubt es außerdem, mehrerer Fahrzeuge simultan zu laden. Dank des Ladens mit hohen Stromstärken und Spannungen ermöglicht es eine Vielzahl unterschiedlicher Einsatzgebiete, etwa für Flottenladelösungen oder, wie in diesem Fall, das Laden an Autobahnen. Für den Anschluss an das öffentliche Stromnetz in Jettingen-Scheppach wurde im Projekt ein Ladecontainer mit zwei Ladeanschlüssen realisiert: Ein Anschluss hat eine bisher einmalige Ladeleistung von max. 450 kW, der Zweite gibt bis zu 175 kW ab. Beide Ladesäulen können ab sofort kostenlos mit allen CCS-fähigen Fahrzeugen genutzt werden.

Neuartige Ladesäulen

Die jetzt vorgestellten Ladesäulen-Prototypen von Allego nutzen die Ladestecker des bewährten Combined Charging System (CCS) in der Typ-2-Variante für Europa. Um die beim schnellen Aufladen mit besonders hoher Leistung auftretenden Anforderungen zu erfüllen, kommen gekühlte HPC-Ladekabel (High Power Charging) von Phoenix Contact zum Einsatz, welche vollständig CCS-kompatibel sind. Als Kühlflüssigkeit wird ein umweltfreundliches Wasser-Glykol-Gemisch verwendet, wodurch der Kühlkreislauf halboffen gestaltet werden kann. Dadurch soll sich die Wartung im Gegensatz zu hermetisch geschlossenen Systemen, vergleichbar einfach gestalten. Eine Herausforderung bestand allerdings darin, die in der Ladeleitung befindlichen Kühlschläuche beim Anschließen an die Ladesäule nicht zu quetschen, wie es mit einer herkömmlichen Kabelverschraubung passieren würde. In diesem Fall würden der Kühlfluss und damit die Kühlleistung beeinträchtigt werden. Dieses Problem wurde von Phoenix Contact gelöst durch eine speziell entwickelte Wanddurchführung mit definierten Schnittstellen für Leistungsübertragung, Kommunikation und Kühlung sowie integrierter Zugentlastung.

Je nach Fahrzeugmodell kann die neue Ultra-Schnellladestation sowohl für Fahrzeuge mit 400-V- als auch 800-V-Batteriesystemen eingesetzt werden. Ihre Ladeleistung passt sich automatisch der maximal zulässigen Ladeleistung des Fahrzeugs an. Die Zeitersparnis, die durch höhere Ladeleistungen erzielt werden kann, lässt sich am Beispiel des BMW i3 Forschungsfahrzeugs darstellen. Für einen Ladevorgang von 10-80 Prozent SOC der Hochvoltbatterie mit 57 kWh Netto-Kapazität werden nur noch 15 Minuten benötigt. Dies kann fahrzeugseitig durch den speziell entwickelten Hochvoltspeicher in Kombination mit einer intelligenten Ladestrategie erreicht werden. Dazu zählen u.a. die genaue Vorkonditionierung der Speichertemperatur bei Ladestart, Temperaturmanagement während des Ladevorgangs und ein perfekt abgestimmtes Profil der Ladeleistung über Zeit.

Fahrzeugseitiges Mehrspannungsnetz

Der Ladevorgang erfolgt über ein neuartiges fahrzeugseitiges Mehrspannungsnetz mit Hochvolt-DC/DC-Wandler (HV-DC/DC), indem die geforderte 800-V-Eingangsspannung der Ladesäule auf die niedrigere 400-V-Systemspannung des BMW i3 Forschungsfahrzeugs transformiert wird. Durch den HV-DC/DC kann das Fahrzeug auch rückwärtskompatibel an allen alten und zukünftigen Ladestationen Strom tanken. Entscheidend für einen zuverlässigen Betrieb ist die gesicherte Kommunikation zwischen Fahrzeug und Ladesäule. Deswegen werden ebenso Standardisierungsthemen zur Interoperabilität erforscht und in Normierungsgremien gebracht.

www.phoenixcontact.com

www.siemens.com

Mehr zu diesem Thema

Publikationen des 50,2 Verlages


Der Branchenleitfaden für Stadtwerke und Netzbetreiber
Die "gelben Seiten" der IT-Sicherheit



Der Branchenleitfaden für Stadtwerke und Netzbetreiber
Die "gelben Seiten" des Smart Metering-Marktes

Der Rollout-Leitfaden für die Praxis
Unterstützung bei der Einführung der Smart-Meter-Technologie.