DER WANDEL IN DER ENERGIETECHNIK

DER WANDEL IN DER ENERGIETECHNIK

Die heutigen Geräte und Betriebsmittel wie Schaltnetzteile, Frequenzumrichter geregelte Antriebe, Ladeeinrichtungen für E-Mobile oder LED Beleuchtungen, arbeiten intern mit hohen Taktfrequenzen um Leistungen effizient zu regeln. Diese können sowohl zu leitungsgebundenen als auch zu feldgebundenen (eingekoppelten) Beeinflussungen im Energienetz führen.

Der Wandel in der Energietechnik – Grund Energieeffizienz und Kosteneinsparung. Um die Energie effizienter nutzen zu können, steuern wir heute vieles über Leistungselektronik. So tauscht man einen Asynchronmotor häufig gegen einen Frequenzumrichter geregelten Antrieb aus oder ein Gerät erhält ein Schaltnetzteil anstelle von einem Transformator.

Die neue Gerätetechnik bezieht in der Regel im Gegensatz zur alten Technik keinen sinusförmigen Strom mehr aus dem Netz. Power Quality Messgeräte zerlegen diesen Strom in das Spektrum aller Frequenzen. In der Netzqualitätsmessung unterteilen wir heute Netzrückwirkungen in Harmonische, Zwischenharmonische und neuerdings in Supraharmonische.

Übergabepunkt des Industriekunden. Spannung und Strom Phase L2.

Wir definieren Harmonische als Vielfache der Grundschwingung (Beispiel 250Hz = 5. Harmonische bei einer 50Hz Grund- schwingung). Liegen Frequenzen zwischen zwei ganzzahligen Vielfachen der Grundschwingung, so bezeichnen wir diese als Zwischen- oder Interharmonische. In der Power Quality Messtechnik sowie in den Normen fasst man in der Regel alle Interharmonischen von einem Bereich zu einem Wert zusammen (Beispiel alle Frequenzen zwischen >350Hz und <400Hz gehen in die 7. Interharmonische ein). Hohe Frequen- zen größer 2,5kHz bis 150kHz benennt man häufig als Supraharmonische.

WOHER KOMMEN DIESE HOHEN SCHALTFREQUENZEN IN UNSEREN VERBRAUCHERN?

Beispiel: Ein Brückengleichrichter am Eingang einer CNC-Maschine richtet die drei Phasenspannungen zu einer DC-Spannung gleich. Diese DC-Spannung wird mit einer bestimmten Taktfrequenz in Pulse mit verschiedener Puls-Pausen-Zeit zerlegt, um im Verbraucher einen sinusförmigen Strom hervorzurufen. Das nennt man „sinusbewertete Pulsbreitenmodulation“. Über diesen Weg kann man die Drehzahl des Motors steuern. Verbraucher mit sehr hoher Leistung wie eine Windkraftanlage haben in der Regel eine niedrige Schaltfrequenz während Anlagen mit geringerer Leistung mit viel höheren Taktfrequenzen arbeiten.

Diese Taktfrequenzen sowie deren Seitenbänder sind sowohl im Netzstrom, als auch in der Netzspannung zu erkennen, welche über die Netzimpedanz abgebildet wird.

Bild 3: Frequenzspektrum der Spannung von einem Verbraucher mit einer Taktfrequenz von 4,5kHz bei
2,5V einer Industrieanlage.

Im Beispiel (Bild 3) sehen wir das Frequenzspektrum der Spannung von einem Verbraucher mit einer Taktfrequenz von 4,5kHz bei 2,5V einer Industrieanlage. Mit dieser Schaltfrequenz arbeitet ein Antrieb. Dies ist aber nicht die einzige Frequenz, welche sich im Energienetz abbildet. Es ergeben sich noch weitere Frequenzen, die wir als Netzrückwirkung aus dieser Anlage erhalten. Mithilfe der Formel bekommen wir alle Vielfachen der Schaltfrequenz und deren Seitenbänder berechnet.

fµ = n·fT ± 2n·f1

n = 1, 2, 3..
fT= Taktfrequenz des Wechselrichters
f1= Grundschwingung Netz (50Hz)

In unserem Beispiel prägt diese Anlage neben den 4,5kHz auch alle Vielfachen hier von 9kHz, 13,5kHz; 18kHz… in das Netz ein, sowie zusätzlich deren Seitenbänder von +/-100Hz; +/200 usw.

WAS SIND DIE PROBLEME MIT DEN WIR KONFRONTIERT WERDEN

Folgende Probleme können nun im Netz aufgrund der Supraharmonischen auftreten:

• Fehlfunktion von Geräten
• Störende Geräuschentwicklung
• Ausfall von Geräten bzw. Alterung

IN DEN SPANNUNGSQUALITÄTSNOMEN WURDE REAGIERT

Lange Zeit war der Frequenzbereich von 2,5kHz bis 150kHz ein normfreier Raum. Die EMV Norm IEC61000-2-2 (Umgebungsbedingungen – Verträglichkeitspegel für niederfrequente leitungsgeführte Störgrößen in öffentlichen Niederspannungsnetzen) hat bereits reagiert und seit 2018 den Bereich der Grenzwerte von bisher 2,5kHz auf 30kHz erweitert. 2019 wurden dann Grenzwerte von 30kHz bis 150kHz eingeführt und die Normlücke vollständig geschlossen. Oberhalb von 150kHz bis mind. 30MHz gelten für Störaussendung von Geräten und Anlagen ebenso Grenzwerte. Diese werden im Zuge einer EMV Prüfung für die Zulassung des Gerätes in einem Prüflabor überprüft. Somit haben wir heute einen lückenlosen Bereich mit Verträglichkeitspegeln.

Der Power Quality Netzanalysator PQ-Box 300 verwendet 24Bit Analog-Digital Eingangswandler und eine Abtastrate von 409,6 kHz. Aufgrund der extrem hohen Auflösung können selbst kleinste Störpegel von einigen Millivolt sehr exakt gemessen und zugeordnet werden. Der Messbereich für Supraharmonische erfasst Frequenzen bis 170kHz. Diese können permanent über einen langen Messzeitraum lückenlos erfasst werden. Für die oben geschilderten Probleme ist es in den seltensten Fällen möglich den Verursacher über eine kurzzeitige Onlinemessung zu detektieren. In der Regel sollten über mindestens eine Woche alle Messdaten ohne Einschränkung erfasst werden, um später durch die Korrelation der verschiedenen Messwerte den Zeitpunkt der Störung und auch den Verursacher eindeutig zuordnen zu können.

FAZIT

Netzrückwirkungen im Frequenzbereich zwischen 2kHz und 150kHz nehmen seit einigen Jahren in unseren Energienetzen stetig zu und dieser Trend wird auch weiter anhalten, auch durch die Energiewende stark getrieben. Auf der anderen Seite steuern wir immer mehr Geräte und Anlagen mit kleinen Signalen. Eine gegenseitige Beeinflussung ist nicht ausgeschlossen. Die Spielregeln für das öffentliche Netz legt heute die EMV Norm IEC61000-2-2 fest und regelt mit ihren Grenzwerten bis 150kHz, ob ein Verbraucher zu hohe Störpegel am Anschluss in das Netz einbringt, oder ob ein gestörtes Gerät eine zu geringe Störfestigkeit aufweist. Die Messtechnik kann dies beweisen. Liegt der Störpegel noch unter den Grenzwerten und ein Verbraucher wird negativ beeinflusst, so ist hier die Störfestigkeit wahrscheinlich zu gering ausgelegt. Wird der Grenzwert der Norm überschritten, so liefert mit ziemlicher Sicherheit der Verursacher zu hohe Rückwirkungen in das Netz.

 

KONTAKT & IMPRESSUM
A. Eberle GmbH & Co. KG
Frankenstraße 160
D-90461 Nürnberg
Telefon: +49 (0)911 62 81 08 – 0
Fax: +49 (0)911 62 81 08 – 99
E-Mail: info@a-eberle.de